Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System

نویسنده

  • S. N. Sivanandam
چکیده

The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system. Keywords—Elman neural network, fault detection, rotating machines, unbalance, vibration analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of rotor bearing parameters using vibration response data in a turbocharger rotor

Turbochargers are most widely used in automotive, marine and locomotive applications with diesel engines. To increase the engine performance nowadays, in aerospace applications also turbochargers are used. Mostly the turbocharger rotors are commonly supported over the fluid film bearings. With the operation, lubricant properties continuously alter leading to different load bearing capacities. T...

متن کامل

Application of Artificial Neural Networks for Identification of Unbalance and Looseness in Rotor Bearing Systems

Abstract: Rotating machinery is common in any industry. Rotating machinery in the modern era are designed for higher running speeds, tighter clearances and working under extreme conditions enhancing efficiency of the system to produce and transmit more power. All these lead to many rotordynamic challenges. Main cause of vibrations is faults in the rotating systems like unbalance, looseness, etc...

متن کامل

Identification of Unbalance and Looseness in Rotor Bearing Systems using Neural Networks

In diagnosing mechanical faults of rotating machinery, it is very important to know the vibration feature of the machine with various forms of fault. A rotor system with fault is generally a complicated non-linear vibrating system. Its vibration is in a very complex form. Rotating machinery is very popular in industrial applications. Most of the mechanical failures are due to vibrations. It is ...

متن کامل

Intelligent Health Evaluation Method of Slewing Bearing Adopting Multiple Types of Signals from Monitoring System

Slewing bearing, which is widely applied in tank, excavator and wind turbine, is a critical component of rotational machine. Standard procedure for bearing life calculation and condition assessment was established in general rolling bearings, nevertheless, relatively less literatures, in regard to the health condition assessment of slewing bearing, were published in past. Real time health condi...

متن کامل

Application of Artificial Neural Network and Wavelet Transform for Vibration Analysis of Combined Faults of Unbalances and Shaft Bow

The vibration analysis of rotating machinery can give an indication of the condition of potential faults such as unbalance, bent shaft, shaft crack, bearing clearance, rotor rub, misalignment, looseness, oil whirl and whip and other malfunctions. The diagnostics of rotor faults has gained importance in recent years. Many papers in the literature have dealt with single faults but normally, more ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016